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a  b  s  t  r  a  c  t

A  main  limitation  of  the  current  approaches  to atherosclerosis  research  is  the  focus  on  the  investigation
of  individual  factors,  which  are  presumed  to  be  involved  in the pathophysiology  and  whose  biological
functions  are,  at  least  in  part,  understood.  These  molecules  are  investigated  extensively  while  others  are
not  studied  at  all.  In  comparison  to  our  detailed  knowledge  about  the  role  of inflammation  in  atheroscle-
rosis,  little  is  known  about  extracellular  matrix  remodelling  and  the  retention  of individual  lipid  species
rather  than  lipid  classes  in  early  and  advanced  atherosclerotic  lesions.  The  recent  development  of mass
eywords:
roteomics
therosclerosis
ipoproteins
etabolomics

iomarkers
atrix

spectrometry-based  methods  and  advanced  analytical  tools  are  transforming  our  ability  to profile  extra-
cellular proteins  and  lipid  species  in animal  models  and  clinical  specimen  with  the  goal  of  illuminating
pathological  processes  and  discovering  new  biomarkers.

© 2011 Elsevier Ireland Ltd. All rights reserved.
ontents

1. Introduction  .  . . . .  .  .  .  .  . . . .  .  .  .  . . . .  . .  .  . .  . . .  .  .  .  .  . . . . .  .  .  . .  . . . .  .  .  .  . .  . . . . . .  . .  .  .  .  . . . . . .  .  . . . .  .  . . . .  .  . .  .  .  . . . .  .  .  .  .  .  . . . .  . . .  .  . . . . . .  .  .  .  . . . . . .  .  .  .  . .  .  .  .  . . . . .  .  .  .  . .  . .  . . . . 12
2. Proteomics  of  atherosclerosis  . .  .  .  . . . . .  .  .  .  . . . .  . .  .  .  .  .  .  .  .  .  .  .  .  . . . . .  .  . . . .  .  . . . . . . . . .  . .  .  .  . . . .  .  .  .  . . . . .  . .  . . . .  .  . . . .  . . . .  .  . . .  .  . . .  .  .  . . .  . . . . .  . .  .  .  .  . .  .  . . .  . .  .  . .  .  . . . .  . 13

2.1.  Proteomics  of  isolated  cells  or  explant  tissues  .  . . . . . . .  .  . .  .  .  . . . . . . .  .  .  .  .  .  .  . . . . . .  .  .  . .  . . . . .  .  .  . . . . . . .  .  .  .  . . .  .  . . .  .  . . .  .  .  . .  .  . . . .  . . .  .  . .  . . .  . .  .  .  .  .  . .  . .  .  . . 13
2.2.  Proteomics  of  the ECM  .  .  . . . . . .  .  .  .  . . .  .  .  .  . . . . . .  .  .  .  .  .  . . . .  .  .  .  .  .  . .  . .  . .  .  .  .  . .  .  . . .  . . . . .  .  . .  . . .  . .  .  .  . . . .  .  .  .  . .  . . . .  .  . . . .  .  . . . .  .  .  . .  .  . .  .  .  .  . . . .  .  . .  . . .  .  . .  . . . . .  . 13
2.3.  Novel  method  for  the  enrichment  of  vascular  ECM.  . . . . . . .  .  .  . . .  .  .  . .  .  . . .  . . . . .  . . .  .  .  . . . . .  . .  . . . .  . . .  .  .  . . .  .  .  . .  .  . . . .  .  .  . .  .  . . . .  .  . .  . . .  .  .  .  . . . . . .  .  .  .  .  . . . 14

3. Lipidomics  in  atherosclerosis  .  . . . .  . .  .  . .  .  . . .  .  .  .  .  . . . .  .  .  .  .  .  .  . . .  .  .  . . . . . .  . .  .  . . . .  . . . .  . . . .  .  . . .  . . . .  .  . . . .  . . . .  .  . . . .  .  .  . . . . .  . . . .  .  . . . .  . . . . . . . . .  . .  .  . .  .  . . .  .  .  . . .  . .  .  . . 14
4.  Challenges  in  mass  spectrometry  .  .  .  .  .  . . . .  . .  .  .  .  . . . .  . .  .  .  .  . . . .  .  . .  .  . . .  . . .  . .  .  . . .  .  .  .  . . . . . . .  .  .  .  .  . . .  .  . .  .  .  . . . .  .  . .  . .  . . . . . . .  .  . .  . . . .  .  .  .  .  .  .  .  . . . . . .  .  . .  .  . .  . .  .  . . . . . . 16
5.  Conclusions  .  . . . . .  .  .  . . . .  .  .  . . . . .  .  .  .  . . . .  .  .  .  . . . . .  .  .  .  .  .  . . .  .  .  .  . .  .  . . . . . .  . .  .  . .  . .  . . .  . .  . . . .  .  . . . .  .  .  . .  .  . . . .  .  .  . . .  . . .  .  .  .  .  . . . . . .  .  .  .  .  . . . . . . .  .  .  .  . . . . . .  .  .  . . .  . .  .  .  .  . . .  . . . 16

Acknowledgments  . .  .  . . . .  .  .  .  .  . . .  .  .  .  .  . . . . .  .  .  .  .  . . .  . .  .  .  .  . . . . .  .  .  .  .  . . . . .  .  .  .  .  . . . . . . .  .  .  .  .  . . . .  .  .  . . .  .  . . . .  .  .  .  .  . . . . .  .  .  .  . . . . . . .  .  .  . . . . . . .  . .  .  .  .  .  .  . . . .  .  . .  . .  . .  . .  . . .  . . 16
References  .  .  .  .  . .  . .  .  .  .  .  . . .  .  .  .  .  .  . . . .  .  .  .  .  . . . .  .  .  .  . . .  . . .  .  .  .  . . .  .  .  .  .  .  . .  . . .  .  .  .  .  . .  .  . . . . . .  . .  .  . . .  .  .  . . . .  .  .  . . . .  .  . .  .  .  . . . .  .  . .  .  . . . .  .  .  . . . . . . .  .  .  . .  . . .  .  .  . . . . . .  .  .  .  . .  .  . . .  . 16

. Introduction

The retention of proatherogenic low-density lipoprotein (LDL)
articles on the subendothelial extracellular matrix (ECM) is a hall-

inflammatory response, which results in the release of prote-
olytic enzymes and induces the dedifferentiation of vascular
smooth muscle cells (SMCs) resulting in alterations of their matrix-
producing properties [3]. The precise mechanisms responsible for
ark of atherosclerosis [1].  Apolipoprotein B (apoB)-containing
ipoprotein particles are trapped in the arterial intima by pro-
eoglycans in atherosclerosis-prone areas and eventually become

odified, commonly by aggregation and oxidation [2].  The ini-
ial accumulation of proatherogenic lipoproteins initiates an

∗ Corresponding author at: King’s British Heart Foundation Centre, King’s College
ondon, 125 Coldharbour Lane, London SE5 9NU, UK. Tel.: +44 020 7848 5132;
ax: +44 020 7848 5296.

E-mail address: manuel.mayr@kcl.ac.uk (M.  Mayr).

021-9150/$ – see front matter ©  2011 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.atherosclerosis.2011.09.043
the accumulation of certain matrix components and subsequent
lipoprotein retention on the vessel wall are not fully elucidated.
Undoubtedly, ECM remodelling contributes to the formation of
atherosclerotic lesions and the lipid composition of apolipopro-
teins influences their binding properties to the matrix. An unbiased
discovery approach, which is not limited to known molecules of
presumed importance, will be invaluable for the identification of

novel, previously unknown mediators of disease. Although descrip-
tive, the detailed examination of atherosclerotic plaques using
advanced proteomics and lipidomics techniques can generate novel
insights and form the basis for further mechanistic investigations

dx.doi.org/10.1016/j.atherosclerosis.2011.09.043
http://www.sciencedirect.com/science/journal/00219150
http://www.elsevier.com/locate/atherosclerosis
mailto:manuel.mayr@kcl.ac.uk
dx.doi.org/10.1016/j.atherosclerosis.2011.09.043
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potential include leukocyte myeloperoxidase, an enzyme released
A. Didangelos et al. / Ath

n atherogenesis. In this review, we will highlight key studies on
therosclerosis using mass spectrometry with a particular focus on
roteomics of the vascular ECM and lipidomics.

. Proteomics of atherosclerosis

In comparison to the analysis of messenger RNA (mRNA), pro-
eomics offers certain advantages [4]:  First, atherosclerosis is a
hronic disease and lesions develop over years. While transcript
evels can provide information abut cellular activity at the time of
arvest, the actual protein content is dependent on the balance
f protein synthesis and degradation [5].  This balance is particu-
arly important when studying the ECM and its associated proteins,

hich build-up over time. Newly synthesised ECM proteins are
ncorporated into the existing matrix and a snapshot of mRNA
xpression is less informative than a proteomics screen. Second,
roteomics can explore the chemical diversity beyond the genome,
uch as posttranslational modifications, which are not detectable at
he mRNA level [6],  but affect protein function and human disease
ncluding atherosclerosis. Over the last 10 years, few proteomics
tudies have been performed on atherosclerotic lesions.

.1. Proteomics of isolated cells or explant tissues

Most studies focused on the identification of potential biomark-
rs of human atherosclerosis and used carotid and coronary
theroma or conditioned medium from isolated cells or explant
issues. Some early findings included increased levels of ferritin
ight-chain in coronary lesions, which was related to lipid oxida-
ion in the vessel wall [7],  and a reduction in heat shock protein
Hsp) 20 and 27 and superoxide dismutase in unstable carotid
theromas [8].  Hsp27, a cytoplasmic protein, was  decreased in
he supernatant of cultured carotid plaques and its plasma levels
ere reported to be lower in a small cohort of patients undergoing

arotid endarterectomy [9].  Given the importance of inflammation
n atherosclerosis, Barderas et al. analyzed the cellular proteome
f circulating monocytes. Monocytes from patients with acute
oronary syndrome showed higher levels of cathepsin D, Hsp60
nd 70 and protein S100A8 compared to patients with asymp-
omatic coronary artery disease [10]. We  performed one of the first
tudies using a combined proteomics and metabolomics approach
n an animal model of atherosclerosis, namely apolipoprotein E-
eficient (apoE−/−)  mice. We  studied different stages of the disease
rocess to identify alterations in the proteome and metabolome
efore the onset of atherosclerosis. Our findings revealed that inef-
cient glucose and energy metabolism coincide with increased
xidative stress in aortas of apoE−/− mice even before lesion
evelopment. This was evidenced by oxidation of redox-sensitive
roteins, such as peroxiredoxin 6, in aortas of young apoE−/−
ice. Moreover, attenuation of lesion formation was  associated
ith replenishment of the vascular energy pool and posttrans-

ational modifications of cytosolic malic enzyme, which provides
educing equivalents for lipid synthesis and glutathione recycling
11]. A metabolomic comparison of 18-month and 10-week old
ortas from chow-fed apoE−/− mice demonstrated a 2-fold rise
n choline without significant changes in tissue concentrations
f trimethyl amine oxide (TMAO) [11]. Interestingly, TMAO is
ot an endogenous metabolite but generated from the gut flora
pon ingestion of phospholipids. Gut bacteria break down prod-
cts with high phospholipid content (such as red meat and milk)
o betaine and choline, which are then converted to TMAO by

iver enzymes. A recent metabolomics screen in plasma iden-
ified these functionally related metabolites – betaine, choline,
nd TMAO – as potential biomarkers of atherosclerosis [12]. Fur-
hermore, choline or TMAO feeding accelerated atherosclerosis in
rosis 221 (2012) 12– 17 13

apoE−/− mice [12]. We  also studied smooth muscle cells isolated
from atherosclerosis-prone apoE−/− aortas. Their proteomics and
metabolomics profiles were clearly distinct to wild-type smooth
muscle cells, including differences in glucose metabolism and
accompanying expression changes of interleukin-6 and insulin-
like growth factor binding proteins 3 and 6, which regulate the
extracellular distribution and bioavailability of insulin-like growth
factor 1 [13]. In an alternative approach, Wu et al. performed a
proteomics analysis of the biotinylated endothelium from wild-
type or apoE−/− aortas. Differentially expressed proteins included
proteins involved in inflammatory responses, angiogenesis and
lipid metabolism [14]. Finally, proteomics, metabolomics and
immunomics profiles were obtained from microparticles derived
from human carotid endarterectomies [15]. The proteomic arm of
this study identified membrane proteins confirming that plaque
microparticles stem primarily from leukocytes. The metabolomic
approach revealed taurine as the most prominent metabolite in
plaque-derived microparticles, which serves as a negative feedback
after oxidative burst in leukocytes. The immunomic experiment
demonstrated that immunoglobulins were present within plaque
microparticles and that the portfolio of plaque antibodies was  dif-
ferent from circulating antibodies. Thus, the capture of plasma
antibodies within atherosclerotic lesions must be highly specific.
Surprisingly, certain anti-carbohydrate moiety antibodies recog-
nizing carbohydrate antigens of the ABO blood group and the
antigen responsible for hyperacute rejection in xenotransplanta-
tion, the Gal-�-(1,3)-Gal linkage, were enriched in atherosclerotic
lesions as reviewed elsewhere [16].

2.2. Proteomics of the ECM

Since most proteomics studies on atherosclerosis to date
reported predominantly changes in cellular proteins, the extra-
cellular proteome, which is composed of ECM proteins including
collagens, proteoglycans and glycoproteins and proteins associ-
ated with the ECM such as lipoproteins, growth factors, cytokines
and proteinases, is not well explored. During the progression of
atherosclerosis, the continuous pathological remodelling of the
ECM contributes to the transition of a stable to a vulnerable lesion.
Stable lesions exhibit a thicker fibrous cap, enriched in cross-linked
fibrillar collagens, types I and III. In contrast, vulnerable plaques
are covered by a thin and disrupted fibrous cap with reduced col-
lagen content [4].  A comprehensive characterization of the ECM
is essential for the understanding of this disease process. How-
ever, the vascular ECM is mainly studied by antibody staining or
by transcript analysis. Thus, our understanding of its composi-
tion and remodelling in different vascular territories is limited.
In one of the very few proteomics studies that targeted the ECM,
Talusan et al. isolated proteoglycans from human intimal hyperpla-
sia specimens from either atherosclerosis-prone internal carotid
arteries or atherosclerosis-resistant internal thoracic arteries. They
observed increased levels of lumican in the atherosclerosis-prone
arteries and provided the first evidence for the presence of the
cartilage proteoglycan aggrecan in the vasculature [17]. Recently,
de Kleijn et al. identified the ECM glycoprotein osteopontin as a
potential biomarker of carotid atherosclerosis and showed that its
plasma levels are predictive for atherothrombotic events even in
other vascular territories [18]. This study proves the concept that
tissue proteomics can reveal novel circulating biomarkers. Other
examples of extracellular proteins with cardiovascular biomarker
upon neutrophil activation [19,20], the C-terminal propeptide of
procollagen I (PICP) [21], the N-terminal propeptide of procollagen
III (PIIINP) [22], matrix metalloproteinase-9 (MMP-9) [23] and the
tissue inhibitor of metalloproteinases-1 (TIMP-1) [24].
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uring  the early stages of atherosclerosis, LDL binds to the proteoglycans of the ve
ascade  that is proatherogenic.

.3. Novel method for the enrichment of vascular ECM

The characterization of extracellular proteins by proteomics
s difficult for two reasons: First, most extracellular proteins are
carce and their identification is hampered by the presence of abun-
ant cellular or plasma proteins, and second, matrix proteins are
sually cross-linked in tight aggregates and are therefore difficult
o extract and solubilize. Moreover, they are subject to exten-
ive post-translational modifications, in particular glycosylation,
hich alter their molecular mass, charge and electrophoretic prop-

rties. These characteristics not only render the proteins difficult
o identify by mass spectrometry but they are also responsible
or many of the technical problems associated with separation

ethods such as incomplete isoelectric focusing and poor resolu-
ion during electrophoresis. To overcome these shortcomings, we
dapted a biochemical subfractionation procedure recently used in
artilage research to extract ECM proteins based on their differen-
ial solubility [25] and included an additional decellularization step
26]. First, an ionic buffer selectively solubilizes newly synthesised

atrix proteins (the salt-soluble ECM) and facilitates the extraction
f degradation products, which are weakly bound on the intersti-
ial matrix and could be released in plasma as biomarkers. Second,
he tissue is decellularized using low concentration sodium dodecyl
ulfate (SDS). The depletion of cellular proteins allows the identifi-
ation of scarce proteins in the remaining ECM, which is composed
f heavily cross-linked, salt-insoluble protein aggregates includ-
ng collagens, proteoglycans and glycoproteins. Finally, the mature
CM is solubilized in a strongly denaturing buffer.
Using this extraction methodology, we performed a detailed
roteomics comparison of the ECM between healthy human aor-
as and abdominal aortic aneurysms (AAA). Six glycoproteins were
pregulated during ECM remodelling in AAA, including collagen XII,
uscle cells and composed primarily of collagens, proteoglycans and glycoproteins.
all, becomes modified, i.e. by oxidation (ox-LDL), and sustains a proinflammatory

thrombospondin 2, aortic carboxypeptidase-like protein (ACLP),
periostin, fibronectin and tenascin [27]. By extracting and preserv-
ing the proteolytic fragments within the tissue we  showed that
these six glycoproteins were also degraded and their fragmen-
tation could be linked to metalloproteinases (MMP)-12 activity.
Several studies have shown that MMPs  are responsible for plaque
destabilization and aneurysm formation, but their vascular targets
are not comprehensively characterized. Proteomics can be used
to investigate the functional role of MMPs  and other proteases
in vascular disease by mapping their proteolytic activity on vas-
cular tissues. Finally, numerous other extracellular proteins were
identified for the first time in the vasculature, including the glyco-
proteins podocan, sclerostin and agrin, the uncharacterized retinal
pigment epithelium (RPE) spondin and target of Nesh (TARSH).
These proteomics findings will form the basis for future investi-
gations exploring the role of novel extracellular proteins in the
vasculature (Fig. 1).

3. Lipidomics in atherosclerosis

The retention of apoB-containing lipoprotein particles in the
vessel wall results in the formation of fatty streaks, an early event
in atherogenesis. ApoB-100, the main protein component of LDL,
binds not only to the LDL receptor (LDLR) [28], a key mediator of
reverse cholesterol transport from macrophages, but also to vascu-
lar proteoglycans [29]. Biglycan and versican, both abundant in the
vasculature, are key mediators of lipoprotein binding. They accu-

mulate in atherosclerosis-prone arteries and their glycosylation
pattern is affected by proatherogenic stimuli [30]. Other matrix
molecules, including collagen, elastin, laminins and fibronectin,
have been shown to interact with LDL but their role in primary
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Fig. 2. Lipidomics of atherosclerotic plaques. Lipids were separated by ultra performance reverse phase liquid chromatography on a Waters® ACQUITY UPLC® (HSS T3 Column,
100  mm × 2.1 mm i.d., 1.8 �m particle size, 55 ◦C, flow rate 400 �L/min, Waters, Milford MA, USA) and analyzed on a quadrupole time-of-flight mass spectrometer (Waters®

SYNAPTTM HDMSTM system) in both positive (A) and negative ion mode (C). In positive MS  mode, lysophosphatidylcholines (lPCs) and lysophosphatidylethanolamines
(lPEs)  eluted first; followed by phosphatidylcholines (PCs), sphingomyelin (SMs), phosphatidylethanolamines (PEs) and cholesteryl esters (CEs); diacylglycerols (DAGs)
and  triacylglycerols (TAGs) had the longest retention times. In negative MS mode, fatty acids (FA) were followed by phosphatidylglycerols (PGs), phosphatidylinositols (PIs),
phosphatidylserines (PS) and PEs. The chromatographic peaks corresponding to the different classes were detected as retention time-mass to charge ratio (m/z) pairs and their
areas  were recorded. Principal component analyses on 629 variables from triplicate analysis (C1, 2, 3 = control 1, 2, 3; P1, 2, 3 = endarterectomy patient 1, 2, 3) demonstrated
a (B) an
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 clear separation of atherosclerotic plaques and control radial arteries in positive 

rojection of the pooled sample within the scores plot confirm the reproducibility o
alue of 0.6.

ipoprotein retention appears to be less important. The interaction
f lipoprotein particles with proteoglycans is ionic and involves
he interaction of positively charged residues on apoB (especially
poB-100) with the negatively charged glycosaminoglycan (GAG)
ide-chains of proteoglycans. Additional interactions may  exist
etween the lipid moieties of LDL and the proteoglycan core pro-
eins. Vice versa, the binding affinity of LDL relates to its diameter,
ts apoC-III content as well as the lipid composition of the sur-
ace (phospholipids) and the core (cholesteryl esters, triglycerides)
31]. The concentration of cholesteryl esters in particular is a key
eterminant. Cholesteryl ester enrichment of LDL increases its
ffinity to GAGs and LDLR, probably mediated by a conformational
hange of the apoB-100 molecules [32]. Triglyceride enrichment
as the opposite effect [33]. Moreover, lipids, glycolipids and

ipoproteins bind to toll-like receptors (TLRs) and can initiate intra-
ellular signalling. Recent studies have explored the role of TLRs
n atherosclerosis, which act as proatherogenic (TLR2 and 4) [34]
nd as protective (TLR3) [35] modulators of vascular inflammation.
eimon et al. showed that proatherogenic oxidized phospholipids,
xidized LDL and saturated fatty acids could initiate apoptosis in
acrophages through a mechanism requiring both the scavenger

eceptor and the TLR2 [36]. Moreover, Sun et al. showed that load-

ng of macrophages with free-cholesterol results in the activation of
LRs and the induction of MMPs  and cathepsin K [37]. Apart from
he well-characterized function of lipid classes in plaque forma-
ion, surprisingly little is known about the role of individual lipid
d negative (D) ion mode. The clustering of the technical replicates and the central
nalyses, and the Goodness of Fit test returned a chi-squared of 0.4 and a R-squared

species in atherosclerosis. In most studies, atherosclerotic lesions
are just visualized by oil-red O staining. While this fat-soluble dye
is a reliable read-out of the total lipid-burden in the vasculature,
it does not provide detailed information on the lipid composition.
Arguably, quantifying the “redness” of an artery or tissue section
should not be considered state-of-the-art for assessing the lipid
content of atherosclerotic plaques. Mass spectrometry allows a far
more comprehensive lipid analysis with the promise of identifying
novel biomarkers for atherosclerosis and plaque vulnerability [38].
In analogy to genome or proteome, the “lipidome” comprises the
entire spectrum of lipid species in a biological system. “Lipidomics”
aims to characterize these lipid species and clarify their biological
functions [39]. Thus far, very few studies have applied lipidomics
to atherosclerosis. For instance, Hiukka et al. used mass spectrome-
try to measure the lipid composition of LDL particles isolated from
hyperlipidemic diabetic patients and apoB transgenic mice [40].
Other studies targeted individual lipid classes in atherosclerotic
plaques [41–44] but no comparisons were performed across differ-
ent classes. One recent proof-of-concept study identified 26 lipid
species from a single human atherosclerotic plaque using desorp-
tion electrospray ionization mass spectrometry [45]. To provide a
more detailed investigation of the lipid composition in atheroscle-

rotic lesions and search for characteristic lipid signatures of plaque
vulnerability, we used shotgun lipidomics [46]. Liquid extraction
surface analysis (LESA) from tissue sections was complemented
by lipid extraction with chloroform/methanol to compare radial
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rteries, endarterectomy samples from symptomatic and asymp-
omatic patients, and stable versus unstable areas within the same
ymptomatic lesion [47]. Our analysis resulted in the detection of
50 lipid species from 9 different classes of which 24 were detected

n carotid plaques only. Triacylglycerols (TAGs) were detected in
oth control and plaque samples. In comparison to healthy arter-

es, carotid plaques showed an increase in the relative amount of
holesteryl esters with linoleic acid at the expense of other polyun-
aturated fatty acids like arachidonic acid and eicosapentaenoic
cid (Fig. 2). These changes in the relative amount of lipid species
ould be an indicator for altered substrate availability for inflamma-
ory mediators and mediators of resolution (lipoxins, resolvins, and
rotectins) [48]. Certain sphingomyelin species were also markedly
nriched in atherosclerotic lesions. Importantly, the combination of
ipid species across different classes provided a better separation
f stable and unstable areas in principal component analysis than
pecies from individual lipid classes, demonstrating the diagnostic
otential of this global lipidomics approach [49]. Similarly, a very
ecent study demonstrated the ability of plasma lipidomics profil-
ng to distinguish patients with stable and unstable coronary artery
isease [50].

. Challenges in mass spectrometry

Mass spectrometry is an evolving technology and the tech-
ological advances facilitate the detection and quantification of
carce proteins. Nonetheless, the enrichment of specific subpro-
eomes using differential solubility [27,51] or isolation of cellular
rganelles [52] will remain important to increase coverage and,
t least partially, overcome the inhomogeneity of diseased tis-
ue, one of the major factors affecting sample-to-sample variation.
roteomics is also the method of choice for the identification of
ost-translational modifications [53], which play an essential role

n protein function, i.e. enzymatic activation, binding ability and
ormation of ECM structures. Again, efficient enrichment is essen-
ial to increase the likelihood of identifying modified peptides
n complex mixtures. Lipidomics faces similar challenges. While
he extraction of lipids is more selective [54,55], new enrichment

ethods are needed for scarce lipids as well as labile lipid metabo-
ites, that may  have important bioactivity [56]. Another pressing
ssue in lipidomics is data analysis, in particular the lack of auto-

ated search engines that can analyze mass spectra obtained from
nstruments of different vendors. Efforts to overcome this issue are
urrently underway [57].

. Conclusions

Proteomics and lipidomics offer an unbiased platform for the
nvestigation of ECM and lipids within atherosclerosis. In combi-
ation, these innovative technologies will reveal key differences in
roteolytic processes responsible for plaque rupture and advance
ur understanding of ECM – lipoprotein interactions in atheroscle-
osis.
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